Genetic perturbation of key central metabolic genes extends lifespan in Drosophila and affects response to dietary restriction.
نویسندگان
چکیده
There is a connection between nutrient inputs, energy-sensing pathways, lifespan variation and aging. Despite the role of metabolic enzymes in energy homeostasis and their metabolites as nutrient signals, little is known about how their gene expression impacts lifespan. In this report, we use P-element mutagenesis in Drosophila to study the effect on lifespan of reductions in expression of seven central metabolic enzymes, and contrast the effects on normal diet and dietary restriction. The major observation is that for five of seven genes, the reduction of gene expression extends lifespan on one or both diets. Two genes are involved in redox balance, and we observe that lower activity genotypes significantly extend lifespan. The hexokinases also show extension of lifespan with reduced gene activity. Since both affect the ATP/ADP ratio, this connects with the role of AMP-activated protein kinase as an energy sensor in regulating lifespan and mediating caloric restriction. These genes possess significant expression variation in natural populations, and our experimental genotypes span this level of natural activity variation. Our studies link the readout of energy state with the perturbation of the genes of central metabolism and demonstrate their effect on lifespan.
منابع مشابه
Enhancing S-adenosyl-methionine catabolism extends Drosophila lifespan
Methionine restriction extends the lifespan of various model organisms. Limiting S-adenosyl-methionine (SAM) synthesis, the first metabolic reaction of dietary methionine, extends longevity in Caenorhabditis elegans but accelerates pathology in mammals. Here, we show that, as an alternative to inhibiting SAM synthesis, enhancement of SAM catabolism by glycine N-methyltransferase (Gnmt) extends ...
متن کاملRegulation of Lifespan in Drosophila by Modulation of Genes in the TOR Signaling Pathway
In many species, reducing nutrient intake without causing malnutrition extends lifespan. Like DR (dietary restriction), modulation of genes in the insulin-signaling pathway, known to alter nutrient sensing, has been shown to extend lifespan in various species. In Drosophila, the target of rapamycin (TOR) and the insulin pathways have emerged as major regulators of growth and size. Hence we exam...
متن کاملDrosophila lifespan control by dietary restriction independent of insulin-like signaling
Reduced insulin/insulin-like growth factor (IGF) signaling may be a natural way for the reduction of dietary nutrients to extend lifespan. While evidence challenging this hypothesis is accumulating with Caenorhabditis elegans, for Drosophila melanogaster it is still thought that insulin/IGF and the mechanisms of dietary restriction (DR) might as yet function through overlapping mechanisms. Here...
متن کاملDietary switch reveals fast coordinated gene expression changes in Drosophila melanogaster
Dietary restriction (DR) reduces age-specific mortality and increases lifespan in many organisms. DR elicits a large number of physiological changes, however many are undoubtedly not related to longevity. Whole-genome gene expression studies have typically revealed hundreds to thousands of differentially expressed genes in response to DR, and a key open question is which subset of genes mediate...
متن کاملMacronutrient balance and lifespan
Dietary restriction (DR) without malnutrition is widely regarded to be a universal mechanism for prolonging lifespan. It is generally believed that the benefits of DR arise from eating fewer calories (termed caloric restriction, CR). Here we argue that, rather than calories, the key determinant of the relationship between diet and longevity is the balance of protein to non-protein energy ingest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 282 1815 شماره
صفحات -
تاریخ انتشار 2015